100^2 - 99^2 + 98^2 - 97^2 + 96^2 - 95^2 + ... + 2^2 - 1^2 = ?
Since you can notice that there are fifty pairs of n^2 - (n-1) ^2,
n^2 - (n-1)^2 = n + (n - 1)
Thus 100^2 - 99^2 + 98^2 - 97^2 + 96^2 - 95^2 + ... + 2^2 - 1^2 can also be written as
100 + 99 + 98+ ... + 2 + 1 = (100 x 101)/2 = 5050