#31 - Oracle Probability Interview Question

What is the probability of choosing the correct answer at random from the options below.

a) 1/4
b) 1/2
c) 1
d) 1/4

Oracle Probability Interview Question

If the answer is 1/4, then because 2 out of 4 answer choices are '1/4', the answer must actually be 1/2. This is a contradiction. So the answer cannot be 1/4.
If the answer is 1/2 (or 1), then because 1/2 (or 1) is 1 out of 4 answer choices, the answer must be 1/4. This is again a contradiction. So the answer cannot be 1/2 (nor 1).

So none of the provided answer choices are correct. Therefore the probability of choosing the correct answer is 0%

#32 - Monty Hall Problem Puzzle

The host of a game show, offers the guest a choice of three doors. Behind one is a expensive car, but behind the other two are goats.
After you have chosen one door, he reveals one of the other two doors behind which is a goat (he wouldn't reveal a car).

Now he gives you the chance to switch to the other unrevealed door or stay at your initial choice. You will then get what is behind that door.

You cannot hear the goats from behind the doors, or in any way know which door has the prize.

Should you stay, or switch, or doesn't it matter?

Monty Hall Problem Puzzle

You better switch!

Your first choice has a 1/3 chance of having the car, and that does not change.
The other two doors HAD a combined chance of 2/3, but now a Goat has ben revealed behind one, all the 2/3 chance is with the other door.

#33 - Hard Probability puzzle

Three people enter a room and have a green or blue hat placed on their head. They cannot see their own hat, but can see the other hats.
The color of each hat is purely random. They could all be green, or blue, or any combination of green and blue.
They need to guess their own hat color by writing it on a piece of paper, or they can write 'pass'.
They cannot communicate with each other in any way once the game starts. But they can have a strategy meeting before the game.
If at least one of them guesses correctly they win $50,000 each, but if anyone guess incorrectly they all get nothing.
What is the best strategy?

Hard Probability puzzle

Simple strategy: Elect one person to be the guesser, the other two pass. The guesser chooses randomly 'green' or 'blue'. This gives them a 50% chance of winning.


Better strategy: If you see two blue or two green hats, then write down the opposite color, otherwise write down 'pass'.

It works like this ('-' means 'pass'):

Hats: GGG, Guess: BBB, Result: Lose
Hats: GGB, Guess: --B, Result: Win
Hats: GBG, Guess: -B-, Result: Win
Hats: GBB, Guess: G--, Result: Win
Hats: BGG, Guess: B--, Result: Win
Hats: BGB, Guess: -G-, Result: Win
Hats: BBG, Guess: --G, Result: Win
Hats: BBB, Guess: GGG, Result: Lose

Result: 75% chance of winning!

#34 - Paradox Probability Puzzle

This is a famous paradox which has caused a great deal of argument and disbelief from many who cannot accept the correct answer. Four balls are placed in a hat. One is white, one is blue and the other two are red. The bag is shaken and someone draws two balls from the hat. He looks at the two balls and announces that at least one of them is red. What are the chances that the other ball he has drawn out is also red?

There are six possible pairings of the two balls withdrawn, RED+RED, RED+WHITE, WHITE+RED, RED+BLUE, BLUE+RED, WHITE+BLUE. We know that the WHITE + BLUE combination has not been drawn. This leaves five possible combinations remaining. Therefore the chances that the RED + RED pairing has been drawn are 1 in 5. Many people cannot accept that the solution is not 1 in 3, and of course it would be, if the balls had been drawn out separately and the color of the first ball announced as red before the second had been drawn out. However, as both balls had been drawn together, and then the color of one of the balls announced, then the above solution, 1 in 5, must be the correct one.

#35 - Ant Problem Probability Quiz

Three ants are sitting at the three corners of an equilateral triangle. Each ant starts randomly picks a direction and starts to move along the edge of the triangle. What is the probability that none of the ants collide?

So let’s think this through. The ants can only avoid a collision if they all decide to move in the same direction (either clockwise or anti-clockwise). If the ants do not pick the same direction, there will definitely be a collision. Each ant has the option to either move clockwise or anti-clockwise. There is a one in two chance that an ant decides to pick a particular direction. Using simple probability calculations, we can determine the probability of no collision.

#36 - Probability Of Second Girl Child

kukki and fukki are a married couple (dont ask me who he is and who she is) :)

They have two kids, one of them is a girl. Assume safely that the probability of each gender is 1/2.
What is the probability that the other kid is also a girl?

Hint: It is not 1/2 as you would first think.

Probability Of Second Girl Child

1/3

This is a famous question in understanding conditional probability, which simply means that given some information you might be able to get a better estimate.

The following are possible combinations of two children that form a sample space in any earthly family:
Girl - GirlGirl - Boy
Boy - Girl
Boy - Boy

Since we know one of the children is a girl, we will drop the Boy-Boy possibility from the sample space.
This leaves only three possibilities, one of which is two girls. Hence the probability is 1/3

#37 - Probability Of Having Same Birthday

How many people must be gathered together in a room, before you can be certain that there is a greater than 50/50 chance that at least two of them have the same birthday?

Only twenty-three people need be in the room, a surprisingly small number. The probability that there will not be two matching birthdays is then, ignoring leap years, 365x364x363x...x343/365 over 23 which is approximately 0.493. this is less than half, and therefore the probability that a pair occurs is greater than 50-50. With as few as fourteen people in the room the chances are better than 50-50 that a pair will have birthdays on the same day or on consecutive days.

#38 - Probability Riddle Loaded Revolver

Henry has been caught stealing cattle, and is brought into town for justice. The judge is his ex-wife Gretchen, who wants to show him some sympathy, but the law clearly calls for two shots to be taken at Henry from close range. To make things a little better for Henry, Gretchen tells him she will place two bullets into a six-chambered revolver in successive order. She will spin the chamber, close it, and take one shot. If Henry is still alive, she will then either take another shot, or spin the chamber again before shooting.

Henry is a bit incredulous that his own ex-wife would carry out the punishment, and a bit sad that she was always such a rule follower. He steels himself as Gretchen loads the chambers, spins the revolver, and pulls the trigger. Whew! It was blank. Then Gretchen asks, 'Do you want me to pull the trigger again, or should I spin the chamber a second time before pulling the trigger?'

What should Henry choose?

Probability Riddle Loaded Revolver

Henry should have Gretchen pull the trigger again without spinning.

We know that the first chamber Gretchen fired was one of the four empty chambers. Since the bullets were placed in consecutive order, one of the empty chambers is followed by a bullet, and the other three empty chambers are followed by another empty chamber. So if Henry has Gretchen pull the trigger again, the probability that a bullet will be fired is 1/4.

If Gretchen spins the chamber again, the probability that she shoots Henry would be 2/6, or 1/3, since there are two possible bullets that would be in firing position out of the six possible chambers that would be in position.

#39 - Famous Probability puzzle SHOOT

Mr. Black, Mr. Gray, and Mr. White are fighting in a truel. They each get a gun and take turns shooting at each other until only one person is left. Mr. Black, who hits his shot 1/3 of the time, gets to shoot first. Mr. Gray, who hits his shot 2/3 of the time, gets to shoot next, assuming he is still alive. Mr. White, who hits his shot all the time, shoots next, assuming he is also alive. The cycle repeats. If you are Mr. Black, where should you shoot first for the highest chance of survival?

Famous Probability puzzle SHOOT

He should shoot at the ground.

If Mr. Black shoots the ground, it is Mr. Gray's turn. Mr. Gray would rather shoot at Mr. White than Mr. Black, because he is better. If Mr. Gray kills Mr. White, it is just Mr. Black and Mr. Gray left, giving Mr. Black a fair chance of winning. If Mr. Gray does not kill Mr. White, it is Mr. White's turn. He would rather shoot at Mr. Gray and will definitely kill him. Even though it is now Mr. Black against Mr. White, Mr. Black has a better chance of winning than before.

#40 - life or death

You are a prisoner sentenced to death. The Emperor offers you a chance to live by playing a simple game. He gives you 50 black marbles, 50 white marbles and 2 empty bowls. He then says, 'Divide these 100 marbles into these 2 bowls. You can divide them any way you like as long as you use all the marbles. Then I will blindfold you and mix the bowls around. You then can choose one bowl and remove ONE marble. If the marble is WHITE you will live, but if the marble is BLACK... you will die.'

How do you divide the marbles up so that you have the greatest probability of choosing a WHITE marble?

life or death

Place 1 white marble in one bowl, and place the rest of the marbles in the other bowl (49 whites, and 50 blacks).

This way you begin with a 50/50 chance of choosing the bowl with just one white marble, therefore life! BUT even if you choose the other bowl, you still have ALMOST a 50/50 chance at picking one of the 49 white marbles.